Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Biosci Rep ; 2023 May 02.
Article in English | MEDLINE | ID: covidwho-2325439

ABSTRACT

The present severe acute respiratory syndrome-2 (SARS-CoV-2) mediated Coronavirus pandemic (COVID-19) and post-COVID-19 complications affect human life drastically. Patients who have been cured of COVID-19 infection are now experiencing post-COVID-19 associated comorbidities, which have increased mortality rates.  The SARS-CoV-2 infection distresses the lungs, kidneys, gastrointestinal tract, and various endocrine glands, including the thyroid. The emergence of variants which includes Omicron (B.1.1.529) and its lineages threaten the world severely. Among different therapeutic approaches, phytochemical-based therapeutics are not only cost-effective but also have lesser side effects. Recently a plethora of studies have shown the therapeutic efficacy of various phytochemicals for the treatment of COVID-19. Besides this, various phytochemicals have been found efficacious in treating several inflammatory diseases, including thyroid-related anomalies. The method of the phytochemical formulation is quick and facile and the raw materials for such herbal preparations are approved worldwide for human use against certain disease conditions. Owing to the advantages of phytochemicals, this review primarily discusses the COVID-19-related thyroid dysfunction and the role of key phytochemicals to deal with thyroid anomaly and post-COVID-19 complications. Further, this review shed light on the mechanism via which COVID-19 and its related complication affect organ function of the body, along with the mechanistic insight into the way by which phytochemicals could help to cure post-COVID-19 complications in thyroid patients. Considering the advantages offered by phytochemicals as a safer and cost-effective medication they can be potentially used to combat COVID-19-associated comorbidities.

2.
J Vis Exp ; (195)2023 05 05.
Article in English | MEDLINE | ID: covidwho-2326239

ABSTRACT

This sensing prototype model involves the development of a reusable, twofold graphene oxide (GrO)-glazed double inter-digitated capacitive (DIDC) detecting chip for detecting severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2) specifically and rapidly. The fabricated DIDC comprises a Ti/Pt-containing glass substrate glazed with graphene oxide (GrO), which is further chemically modified with EDC-NHS to immobilize antibodies (Abs) hostile to SARS-CoV-2 based on the spike (S1) protein of the virus. The results of insightful investigations showed that GrO gave an ideal engineered surface for Ab immobilization and enhanced the capacitance to allow higher sensitivity and low sensing limits. These tunable elements helped accomplish a wide sensing range (1.0 mg/mL to 1.0 fg/mL), a minimum sensing limit of 1 fg/mL, high responsiveness and good linearity of 18.56 nF/g, and a fast reaction time of 3 s. Besides, in terms of developing financially viable point-of-care (POC) testing frameworks, the reusability of the GrO-DIDC biochip in this study is good. Significantly, the biochip is specific against blood-borne antigens and is stable for up to 10 days at 5 °C. Due to its compactness, this scaled-down biosensor has the potential for POC diagnostics of COVID-19 infection. This system can also detect other severe viral diseases, although an approval step utilizing other virus examples is under development.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Viruses , Humans , SARS-CoV-2 , COVID-19/diagnosis , Biosensing Techniques/methods , Antibodies, Viral
3.
EJIFCC ; 34(1):42-56, 2023.
Article in English | EuropePMC | ID: covidwho-2293449

ABSTRACT

Background Inflammatory and hematological markers are used extensively for early prognostication and monitoring in COVID-19. We aimed to determine whether routinely prescribed laboratory markers can predict adverse outcome at presentation in COVID-19. Methods This retrospective observational study was performed on 401 samples collected between July to December 2020 from COVID-19 positive subjects, admitted at All India Institute of Medical Sciences, Delhi, India. Clinical details and laboratory investigations within 3 days of COVID-19 positivity were obtained. Clinical outcomes were noted from patient medical records, till discharge or death. Laboratory parameters, with individually defined cut-offs, were used, either singly or in combination to distinguish survival and death for those having severe and non-severe disease at initial presentation. Findings Total Leukocyte count, Absolute neutrophil count, Neutrophil to Lymphocyte ratio, C-Reactive Protein (CRP), Interleukin-6 (IL-6), Lactate Dehydrogenase, Ferritin and Lymphocyte to CRP ratio (LCR) were significantly altered at presentation in severe COVID-19 as compared to non-severe cases;and, also in those who died due to COVID-19 compared to those who survived. A combination of four markers, CRP (≥3.9mg/dL);IL-6 (≥45.37pg/ml);Ferritin (≥373ng/mL);1/LCR ≥0.405 was found to strongly predict mortality in cases with non-severe presentation as also in severe cases. Conclusion and Interpretation The combination of routinely used markers, CRP, IL-6, Ferritin and 1/LCR can be used to predict adverse outcomes, even in those presenting with mild to moderate disease. This would identify subset of patients who would benefit from closer monitoring than usual for non-severe disease.

4.
Adv Fiber Mater ; : 1-45, 2023 Apr 11.
Article in English | MEDLINE | ID: covidwho-2296035

ABSTRACT

Prevention of spreading viral respiratory disease, especially in case of a pandemic such as coronavirus disease of 2019 (COVID-19), has been proved impossible without considering obligatory face mask-wearing protocols for both healthy and contaminated populations. The widespread application of face masks for long hours and almost everywhere increases the risks of bacterial growth in the warm and humid environment inside the mask. On the other hand, in the absence of antiviral agents on the surface of the mask, the virus may have a chance to stay alive and be carried to different places or even put the wearers at risk of contamination when touching or disposing the masks. In this article, the antiviral activity and mechanism of action of some of the potent metal and metal oxide nanoparticles in the role of promising virucidal agents have been reviewed, and incorporation of them in an electrospun nanofibrous structure has been considered an applicable method for the fabrication of innovative respiratory protecting materials with upgraded safety levels.

5.
OpenNano ; 8:100078-100078, 2022.
Article in English | EuropePMC | ID: covidwho-2026957

ABSTRACT

The emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants made emerging novel coronavirus diseases (COVID-19) pandemic/endemic/or both more severe and difficult to manage due to increased worry about the efficacy and efficiency of present preventative, therapeutic, and sensing measures. To deal with these unexpected circumstances, the development of novel nano-systems with tuneable optical, electrical, magnetic, and morphological properties can lead to novel research needed for (1) COVID-19 infection (anti-microbial systems against SARS-CoV-2), (2) early detection of mutated SARS-CoV-2, and (3) targeted delivery of therapeutics using nano-systems, i.e., nanomedicine. However, there is a knowledge gap in understanding all these nano-biotechnology potentials for managing mutated SARS-CoV-2 on a single platform. To bring up the aspects of nanotechnology to tackle SARS-CoV-2 variants related COVID-19 pandemic, this article emphasizes improvements in the high-performance of nano-systems to combat SARS-CoV-2 strains/variants with a goal of managing COVID-19 infection via trapping, eradication, detection/sensing, and treatment of virus. The potential of state-of-the-art nano-assisted approaches has been demonstrated as an efficient drug delivery systems, viral disinfectants, vaccine productive cargos, anti-viral activity, and biosensors suitable for point-of-care (POC) diagnostics. Furthermore, the process linked with the efficacy of nanosystems to neutralize and eliminate SARS-CoV-2 is extensively highligthed in this report. The challenges and opportunities associated with managing COVID-19 using nanotechnology as part of regulations are also well-covered. The outcomes of this review will help researchers to design, investigate, and develop an appropriate nano system to manage COVID-19 infection, with a focus on the detection and eradication of SARS-CoV-2 and its variants. This article is unique in that it discusses every aspect of high-performance nanotechnology for ideal COVID pandemic management. Graphical Image, graphical

7.
Chem Biol Drug Des ; 100(5): 699-721, 2022 11.
Article in English | MEDLINE | ID: covidwho-2001616

ABSTRACT

Application of materials capable of energy harvesting to increase the efficiency and environmental adaptability is sometimes reflected in the ability of discovery of some traces in an environment-either experimentally or computationally-to enlarge practical application window. The emergence of computational methods, particularly computer-aided drug discovery (CADD), provides ample opportunities for the rapid discovery and development of unprecedented drugs. The expensive and time-consuming process of traditional drug discovery is no longer feasible, for nowadays the identification of potential drug candidates is much easier for therapeutic targets through elaborate in silico approaches, allowing the prediction of the toxicity of drugs, such as drug repositioning (DR) and chemical genomics (chemogenomics). Coronaviruses (CoVs) are cross-species viruses that are able to spread expeditiously from the into new host species, which in turn cause epidemic diseases. In this sense, this review furnishes an outline of computational strategies and their applications in drug discovery. A special focus is placed on chemogenomics and DR as unique and emerging system-based disciplines on CoV drug and target discovery to model protein networks against a library of compounds. Furthermore, to demonstrate the special advantages of CADD methods in rapidly finding a drug for this deadly virus, numerous examples of the recent achievements grounded on molecular docking, chemogenomics, and DR are reported, analyzed, and interpreted in detail. It is believed that the outcome of this review assists developers of energy harvesting materials and systems for detection of future unexpected kinds of CoVs or other variants.


Subject(s)
COVID-19 Drug Treatment , Drug Repositioning , Computers , Drug Design , Drug Discovery/methods , Humans , Molecular Docking Simulation
8.
Innovation (Camb) ; 3(5): 100303, 2022 Sep 13.
Article in English | MEDLINE | ID: covidwho-1984243
9.
Drug Discov Today ; 27(10): 103330, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1966493

ABSTRACT

Among explored nanomaterials, nanosponge-based systems have exhibited inhibitory effects for the biological neutralization of, and antiviral delivery against, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). More studies could pave the path for clarification of their biological neutralization mechanisms as well as the assessment of their long-term biocompatibility and biosafety issues before clinical translational studies. In this review, we discuss recent advances pertaining to antiviral delivery and inhibitory effects of nanosponges against SARS-CoV-2, focusing on important challenges and opportunities. Finally, as promising approaches for recapitulating the complex structure of different organs/tissues of the body, we discuss the use of 3D in vitro models to investigate the mechanism of SARS-CoV-2 infection and to find therapeutic targets to better manage and eradicate coronavirus 2019 (COVID-19).


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Humans
10.
Sci Total Environ ; 825: 153902, 2022 Jun 15.
Article in English | MEDLINE | ID: covidwho-1692893

ABSTRACT

Fast, efficient, and accurate detection of SARS-CoV-2 spike antigen is pivotal to control the spread and reduce the mortality of COVID-19. Nevertheless, the sensitivity of available nanobiosensors to detect recombinant SARS-CoV-2 spike antigen seems insufficient. As a proof-of-concept, MOF-5/CoNi2S4 is developed as a low-cost, safe, and bioactive hybrid nanostructure via the one-pot high-gravity protocol. Then, the porphyrin, H2TMP, was attached to the surface of the synthesized nanomaterial to increase the porosity for efficient detection of recombinant SARS-CoV-2 spike antigen. AFM results approved roughness in different ranges, including 0.54 to 0.74 µm and 0.78 to ≈0.80 µm, showing good physical interactions with the recombinant SARS-CoV-2 spike antigen. MTT assay was performed and compared to the conventional synthesis methods, including hydrothermal, solvothermal, and microwave-assisted methods. The synthesized nanodevices demonstrated above 88% relative cell viability after 24 h and even 48 h of treatment. Besides, the ability of the synthesized nanomaterials to detect the recombinant SARS-CoV-2 spike antigen was investigated, with a detection limit of 5 nM. The in-situ synthesized nanoplatforms exhibited low cytotoxicity, high biocompatibility, and appropriate tunability. The fabricated nanosystems seem promising for future surveys as potential platforms to be integrated into biosensors.


Subject(s)
Biosensing Techniques , COVID-19 , Metal-Organic Frameworks , Biosensing Techniques/methods , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/chemistry
11.
MedComm (2020) ; 3(1): e119, 2022 Mar.
Article in English | MEDLINE | ID: covidwho-1680505

ABSTRACT

Since early 2020, coronavirus diseases 2019 (COVID-19) infection pandemic/endemic is constantly surprising health experts because of continuous variations in the structures of severe acute respiratory coronavirus 2 (SARS-CoV-2) in the form of newly emerged variants. Such mutations have exhibited high mortality and severity due to the newly emerged more infectious sites of SARS-CoV-2, making viral infection more transmissible, infectious, and severe. Recently, SARS-CoV-2 mutated to another variant, namely, Omicron (B.1.1.529), which is many times more transmissible and infectious than existed deadly Delta variants of the virus. This severity is closely correlated to a larger number of mutations observed in the receptor-binding domain of the spike protein of the Omicron-SARS-CoV-2. Considering severity, Omicron has been declared as variant of concerns by the World Health Organization and within days from its emergence, Omicron infection has spread globally, increased hospitalization, exhibited more severity for the young generation, invaded defense mechanism of natural immunity, not responsive to the available vaccines. Such circumstances resonated with the efficiency of available strategies established to manage COVID-19 intelligently and successfully. To explore these aspects, this perspective article carefully and critically summarizes the Omicron's origin, structure, pathogenesis, impact health along with health systems, and experts' recommendations to manage it successfully.

12.
Biomolecules ; 11(11)2021 11 17.
Article in English | MEDLINE | ID: covidwho-1523862

ABSTRACT

Metal-organic frameworks (MOFs) have been widely used as porous nanomaterials for different applications ranging from industrial to biomedicals. An unpredictable one-pot method is introduced to synthesize NH2-MIL-53 assisted by high-gravity in a greener media for the first time. Then, porphyrins were deployed to adorn the surface of MOF to increase the sensitivity of the prepared nanocomposite to the genetic materials and in-situ cellular protein structures. The hydrogen bond formation between genetic domains and the porphyrin' nitrogen as well as the surface hydroxyl groups is equally probable and could be considered a milestone in chemical physics and physical chemistry for biomedical applications. In this context, the role of incorporating different forms of porphyrins, their relationship with the final surface morphology, and their drug/gene loading efficiency were investigated to provide a predictable pattern in regard to the previous works. The conceptual phenomenon was optimized to increase the interactions between the biomolecules and the substrate by reaching the limit of detection to 10 pM for the Anti-cas9 protein, 20 pM for the single-stranded DNA (ssDNA), below 10 pM for the single guide RNA (sgRNA) and also around 10 nM for recombinant SARS-CoV-2 spike antigen. Also, the MTT assay showed acceptable relative cell viability of more than 85% in most cases, even by increasing the dose of the prepared nanostructures.


Subject(s)
COVID-19/diagnosis , Metal-Organic Frameworks/chemistry , Porphyrins/chemistry , Animals , COVID-19 Testing , CRISPR-Cas Systems , DNA, Single-Stranded , HEK293 Cells , HeLa Cells , Hep G2 Cells , Humans , Hydrogen Bonding , Limit of Detection , Nanocomposites , Nanostructures , Nitrogen/chemistry , PC12 Cells , Porosity , RNA, Guide, Kinetoplastida , RNA, Viral/metabolism , Rats , SARS-CoV-2 , Sensitivity and Specificity , Surface Properties
13.
Microb Pathog ; 156: 104908, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1209595

ABSTRACT

In recent decades, the major concern of emerging and re-emerging viral diseases has become an increasingly important area of public health concern, and it is of significance to anticipate future pandemic that would inevitably threaten human lives. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly emerged virus that causes mild to severe pneumonia. Coronavirus disease (COVID-19) became a very much concerned issue worldwide after its super-spread across the globe and emerging viral diseases have not got specific and reliable diagnostic and treatments. As the COVID-19 pandemic brings about a massive life-loss across the globe, there is an unmet need to discover a promising and typically effective diagnosis and treatment to prevent super-spreading and mortality from being decreased or even eliminated. This study was carried out to overview nanotechnology-based diagnostic and treatment approaches for emerging and re-emerging viruses with the current treatment of the disease and shed light on nanotechnology's remarkable potential to provide more effective treatment and prevention to a special focus on recently emerged coronavirus.


Subject(s)
COVID-19 , Pandemics , Humans , Nanotechnology , Pandemics/prevention & control , Public Health , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL